Answer:
b.[tex]\Delta U_s<0[/tex]
e.[tex]\Delta E_{mech}>0[/tex]
Explanation:
We are given that
Spring constant=k
Angle=[tex]\theta[/tex]
Mass=m
Distance=d
Distance=[tex]\Delta x[/tex]
Initial potential energy of spring=[tex]\frac{1}{2}k(\Delta x)^2[/tex]
Final potential energy of spring=0
Final potential energy of system=mgd
Initial mechanical energy of system=Initial K.E+Initial P.E=0+0=0
Final mechanical energy of the system=Kinetic energy+Potential energy=0+mgd
[tex]\Delta E_{mech}=mgd-0=mgd[/tex]>0
[tex]\Delta U_{s}=Final-initial=0-\frac{1}{2}k(\Delta x)^2=-\frac{1}{2}k(\Delta x)^2=<0[/tex]
Option b and e are true.