The given expression is
[tex]10\mleft(3x+2\mright)>7\mleft(2x-4\mright)[/tex]First, we use the distributive property
[tex]\begin{gathered} 10\cdot3x+10\cdot2>7\cdot2x-7\cdot4 \\ 30x+20>14x-28 \end{gathered}[/tex]Now, we subtract 20 on each side
[tex]\begin{gathered} 30x+20-20>14x-28-20 \\ 30x>14x-48 \end{gathered}[/tex]Then, we subtract 14x on each side
[tex]\begin{gathered} 30x-14x>14x-48-14x \\ 16x>-48 \end{gathered}[/tex]At last, we divide the equation by 16
[tex]\begin{gathered} \frac{16x}{16}>\frac{-48}{16} \\ x>-3 \end{gathered}[/tex]