May I please get help with this. I have tried multiple times but still could get the the correct answers

Given:
Solution:
Note: The sum of the internal angles of a triangle is equal to 180 degrees.
Now, let's add the angle and equate to 180 degrees.
[tex]\begin{gathered} Q+R+S=180 \\ (3x-9)+(7x+2)+x=180 \\ 3x+7x+x-9+2=180 \\ 11x=180+7 \\ 11x=187 \\ \frac{11x}{11}=\frac{187}{11} \\ x=17 \\ S=17 \end{gathered}[/tex]To find for Q, let's use the value of x.
[tex]\begin{gathered} Q=3x-9 \\ Q=3(17)-9 \\ Q=51-9 \\ Q=42 \end{gathered}[/tex]And for the value of R:
[tex]\begin{gathered} R=7x+2 \\ R=7(17)+2 \\ R=119+2 \\ R=121 \end{gathered}[/tex]ANSWER:
S = 17 degrees
Q = 42 degrees
R = 121 degrees