The equations of three lines are given belovr.Line 1: 5y = 3x + 2Line 2: y = (5/3) x - 1Line 3: 6x + 10y = 6For each pair of lines, determine whether they are parallel, perpendicular, or neither.Line 1 and Line 2: O Parallel PerpendicularNeither??Line 1 and Line 3: O Parallel Perpendicular NeitherLine 2 and Line 3: O ParallelPerpendicular Neither

Respuesta :

We are given the lines

Line 1

[tex]5y=3x+2[/tex]

Line 2

[tex]y=\frac{5}{3}x-1[/tex]

Line 3

[tex]6x+10y=6[/tex]

We want to determine the pair that are parallel, perpendicular or neither

Solution

In order to determine that, we need to obtain the slope of each lines

Note: (1) if the slopes are equal, then they are parallel;

(2) If the product of the slopes equal neagtive one (-1), then they are perpendicular;

(3) Otherwise, they are neither

Now, we will obtain the slope of the lines

We will write each of the equation in this form

[tex]y=mx+c[/tex]

Thus, the slope will be the coefficient of x (i.e m)

For Line 1

[tex]\begin{gathered} 5y=3x+2 \\ y=\frac{3}{5}x+\frac{2}{5} \\ \text{Therefore,} \\ m_1=\frac{3}{5} \end{gathered}[/tex]

For Line 2

[tex]\begin{gathered} y=\frac{5}{3}x-1 \\ \text{thus,} \\ m_2=\frac{5}{3} \end{gathered}[/tex]

For Line 3

[tex]\begin{gathered} 6x+10y=6 \\ 10y=-6x+6 \\ y=-\frac{6}{10}x+\frac{6}{10} \\ y=-\frac{3}{5}x+\frac{3}{5} \\ \text{Therefore,} \\ m_3=-\frac{3}{5} \end{gathered}[/tex]

Now, Let us consider Line 1 and Line 2

[tex]\begin{gathered} m_1\ne m_2\text{ (Not parallel)} \\ m_1\times m_2=\frac{3}{5}\times\frac{5}{3}=1\ne-1\text{ (not perpendicular)} \end{gathered}[/tex]

Therefore, Line 1 and Line 2 are neither parallel nor perpendicular

For Line 1 and Line 3

[tex]\begin{gathered} m_1\ne m_{3\text{ }}\text{ (not parallel)} \\ m_1\times m_3=\frac{3}{5}\times-\frac{3}{5}=-\frac{9}{25}\ne-1\text{ (not perpendicular)} \end{gathered}[/tex]

Therefore, Line 1 and Line 3 are neither parallel nor perpendicular

We consider finally Line 2 and Line 3

[tex]\begin{gathered} m_2\ne m_{3\text{ }}\text{ (not parallel)} \\ m_2\times m_3=\frac{5}{3}\times-\frac{3}{5}=-1\text{ (perpendicular)} \end{gathered}[/tex]

Therefore, Line 2 and Line 3 are perpendicular