Respuesta :

Answer:

The statement that best represents step 5 of Jeremy's proof is;

[tex]m\angle P+m\angle Q+m\angle R=m\angle P+m\angle Q+m\angle V[/tex]

Explanation:

Given the statement 2 and 4 in the attached proof;

2.

[tex]\begin{gathered} m\angle Q=m\angle T \\ m\angle P=m\angle S \end{gathered}[/tex]

Reason: definition of congruency.

4.

[tex]m\angle P+m\angle Q+m\angle R=m\angle S+m\angle T+m\angle V[/tex]

Reason: Transitive property of equality.

substituting statement 2 into statement 4, we will replace angle S with angle P and angle T with angle Q.

So, we will have;

5.

[tex]m\angle P+m\angle Q+m\angle R=m\angle P+m\angle Q+m\angle V[/tex]

Reason: substitution property.

Therefore, the statement that best represents step 5 of Jeremy's proof is;

[tex]m\angle P+m\angle Q+m\angle R=m\angle P+m\angle Q+m\angle V[/tex]