Answer:
The statement that best represents step 5 of Jeremy's proof is;
[tex]m\angle P+m\angle Q+m\angle R=m\angle P+m\angle Q+m\angle V[/tex]Explanation:
Given the statement 2 and 4 in the attached proof;
2.
[tex]\begin{gathered} m\angle Q=m\angle T \\ m\angle P=m\angle S \end{gathered}[/tex]Reason: definition of congruency.
4.
[tex]m\angle P+m\angle Q+m\angle R=m\angle S+m\angle T+m\angle V[/tex]Reason: Transitive property of equality.
substituting statement 2 into statement 4, we will replace angle S with angle P and angle T with angle Q.
So, we will have;
5.
[tex]m\angle P+m\angle Q+m\angle R=m\angle P+m\angle Q+m\angle V[/tex]Reason: substitution property.
Therefore, the statement that best represents step 5 of Jeremy's proof is;
[tex]m\angle P+m\angle Q+m\angle R=m\angle P+m\angle Q+m\angle V[/tex]