Respuesta :

[tex]4x-3,x\ne-5[/tex]

Explanation

[tex]\begin{gathered} f(x)=4x^2+17x-15 \\ g(x)=x+5 \end{gathered}[/tex]

find

[tex]\frac{f(x)}{g(x)}=\frac{4x^2+17x-15}{x+1}[/tex]

Step 1

factorize the numerator.

so

[tex]\begin{gathered} 4x^2+17x-15 \\ \text{rewrite 17x as}-3x+20x \\ 4x^2-3x+20x-15 \\ group \\ (4x^2-3x)+(20x-15) \\ x(4x-3)+5(4x-3) \\ \text{hence} \\ (x+5)(4x-3) \\ 4x^2+17x-15=(x+5)(4x-3) \end{gathered}[/tex]

Step 2

replace

[tex]\begin{gathered} \frac{f(x)}{g(x)}=\frac{4x^2+17x-15}{x+5} \\ \frac{f(x)}{g(x)}=\frac{(x+5)(4x-3)}{x+5} \\ (x+5)\text{ is eliminated,therefore} \\ \frac{f(x)}{g(x)}=(4x-3) \end{gathered}[/tex]

so, the answer is

[tex]4x-3[/tex]

but, we have the restriction, the denominator cannot be zero, so

[tex]\begin{gathered} \frac{f(x)}{g(x)}=\frac{(x+5)(4x-3)}{x+5} \\ x+5\ne0 \\ x\ne-5 \end{gathered}[/tex]

therefore, the solution is

[tex]4x-3,x\ne-5[/tex]

D)

I hope this helps you