Respuesta :

The relation between the legs and the hypotenuse in the right triangle is

[tex](\text{leg}1)^2+(leg2)^2=(hyp.)^2[/tex]

Since leg1 = leg2 = 10 inches

[tex]\begin{gathered} (10)^2+(10)^2=(hyp)^2 \\ 100+100=(hyp.)^2 \\ 200=(\text{hyp}\mathrm{})^2 \end{gathered}[/tex]

Take a square root for both sides

[tex]\begin{gathered} \sqrt[]{200}=hyp. \\ 14.142135\text{ = hyp.} \end{gathered}[/tex]

Round it to the nearest tenth

hypotenuse = 14.1 inches