The area of a rectangles x2 - 2x - 3. If one of the adjacent sides has length (x + 1), determine the length of the other side and hence find an expression for the perimeter of the rectangle in simplest form.

Respuesta :

Given:

The area of a rectangles

[tex]x^2-2x-3[/tex]

And one of the adjacent sides has length is,

[tex](x+1)[/tex]

Required:

To find the other side, and find an expression for the perimeter of the rectangle in simplest form.

Explanation:

[tex]A=L\times W[/tex][tex]\begin{gathered} x^2-2x-3=(x+1)\times W \\ \\ W=\frac{x^2-2x-3}{x+1} \end{gathered}[/tex][tex]\begin{gathered} \text{ x-3} \\ x+1)x^2-2x-3 \\ \text{ x}^2+x \\ =-3x-3 \\ -3x-3 \\ =0 \end{gathered}[/tex]

Therefore, the other side is

[tex](x-3)[/tex]

The perimeter of a rectangle is,

[tex]\begin{gathered} P=2A \\ \\ =2(x^2-2x-3) \\ \\ =2x^2-4x-6 \end{gathered}[/tex]

Final Answer:

The other side of the rectangle is,

[tex](x-3)[/tex]

The perimeter is,

[tex]2x^2-4x-6[/tex]