Respuesta :

Given data

9 17 5 5 33 13 1

From the given data

Maximum value Max = 33

Minimum value Min = 1

The mode of the data is the number that appears most or the most occurring number in the set.

The mode of the data = 5

To find the median, arrange the numbers in ascending or descending order of values.

1 5 5 9 13 17 33

The median = 9

The range of the data is the difference between the maximum and the minimum number in the data.

Range = 33 - 1 = 32

Mean is the sum of the numbers divided by the total number of numbers.

[tex]\begin{gathered} \operatorname{mean}\text{ = }\frac{1\text{ + 5 + 5 + 9 + 13 + 17 + 33}}{7} \\ \operatorname{mean}\text{ = }\frac{83}{7} \\ \operatorname{mean}\text{ = 11.857} \end{gathered}[/tex]

Q1 is the first quartile

[tex]\begin{gathered} \text{Position of the quartile = }\frac{1}{4}(n+1)^{th} \\ \text{= }\frac{1}{4}(7+1)^{th} \\ =2^{th} \\ \text{ From 1 5 5 9 13 17 33} \\ Q1\text{ = 5} \end{gathered}[/tex]

Q3 is the third quartile

[tex]\begin{gathered} \text{Position = }\frac{3}{4}(n+1)^{th} \\ =\text{ }\frac{3}{4}(7+1)^{th} \\ =6^{th} \\ Q3=17^{} \end{gathered}[/tex]

Interquartile range IQR = Q3 - Q1 = 17 - 5 = 12