Respuesta :

Solution

We are given the equation

[tex]x^2-y^2=10(x-y)+1[/tex]

Note: Hyperbola Formula

We will simpify this

[tex]\begin{gathered} x^2-y^2=10(x-y)+1 \\ x^2-y^2=10x-10y+1 \\ x^2-10x-y^2+10y=1 \\ x^2-10x+25-25-y^2+10y=1 \\ x^2-10x+25-y^2+10y-25=1 \\ x^2-10x+25-(y^2-10y+25)=1 \\ (x-5)^2-(y-5)^2=1 \\ \\ \frac{(x-5)^2}{1}-\frac{(y-5)^2}{1}=1 \end{gathered}[/tex]

Thus, we draw the hyperbola

[tex]\frac{(x-5)^2}{1}-\frac{(y-5)^2}{1}=1[/tex]

Ver imagen KaikoaE398948
Ver imagen KaikoaE398948