Respuesta :

the given expression is,

[tex]=\frac{2-i}{-3+i}[/tex][tex]\begin{gathered} =\frac{2-i}{-3+i}\times\frac{-3-i}{-3-i} \\ =\frac{(2-i)(-3-i)}{(-3)^2-i^2} \end{gathered}[/tex][tex]\begin{gathered} =\frac{-6-2i+3i+i^2}{9-(-1)} \\ =\frac{-6+i-1}{9+1} \\ =\frac{-7+i}{10} \end{gathered}[/tex]

so the answer is,

[tex]=-\frac{7}{10}+\frac{1i}{10}[/tex]

we used

[tex](a+b)(a-b)=a^2-b^2[/tex]