Respuesta :

Let's find the mean.

[tex]\begin{gathered} \bar{x}=\frac{\Sigma(x)}{N}=\frac{9+15+15+21+23+31+33+37+45+51}{10} \\ \bar{x}=\frac{280}{10}=28 \end{gathered}[/tex]

The mean is 28.

Then, we find the standard deviation

[tex]\sigma=\sqrt[]{\frac{\Sigma(x-\bar{x})^2}{N}}[/tex]

Let's find the difference between each value and the mean

9-28 = -19

15-28=-13

15-28=-13

21-28=-7

23-28=-5

31-28=3

33-28=5

37-28=9

45-28=17

51-28=23

Then, we add the square power of each subtraction

[tex]\begin{gathered} \sigma=\sqrt[]{\frac{(-19)^2+(-13)^2+(-13)^2+(-7)^2+(-5)^2+3^2+5^2+9^2+17^2+23^2}{10}} \\ \sigma=\sqrt[]{\frac{1706}{10}} \\ \sigma\approx13.1 \end{gathered}[/tex]

The standard deviation is 13.1.

On the other hand, the five-number summary refers to the minimum, the first quartile, the median, the third quartile, and the maximum.

According to the given data set, we have

• The minimum is 9.

,

• The maximum is 51.

,

• The first quartile is 15. (the middle value between the first 5 numbers)

,

• The third quartile is 37. (the middle value between the second 5 numbers)

,

• The median is between 23 and 31.

[tex]Me=\frac{23+31}{2}=\frac{54}{2}=27[/tex]

• The median is 27.