Respuesta :
[tex]\begin{gathered} S_n=\frac{n}{2}(a_1+a_n)\ldots\ldots\ldots\ldots\ldots\text{ arithmetic sequence } \\ S_n=\frac{a_1\mleft(1-r^n\mright)}{1-r}\ldots\ldots\ldots\ldots\ldots\text{.geometric sequence} \\ \end{gathered}[/tex]
The sequence; 3, 9, 15, 21.
Now, from the definition of both sequence, A sequence is an arithmetic if it has a common difference. And a sequence is geometric if it has a common ratio.
A common difference d, is thus given as;
[tex]d=a_2-a_1=\text{ }a_3-a_2[/tex]While a common ratio r, is given as;
[tex]r=\frac{a_2}{a_1}=\frac{a_3}{a_2}[/tex]So, testing for the one that satisfy the sequence, we observed that;
[tex]\begin{gathered} 21-15=15-9=9-3=6 \\ \text{That is, it has a common difference.} \end{gathered}[/tex]Thus, the sequence ia an arithmetic sequence.
Before we can find the Sum of the first ten terms, we have to get the tenth term;
[tex]\begin{gathered} a_n=a_1+(n-1)d \\ \text{Where d=common difference} \\ a_{10}=\text{ tenth term} \\ a_1=\text{ first term} \\ n=\text{number of term} \\ a_{10}=3+(10-1)(6)=3+54=57 \end{gathered}[/tex]Then;
[tex]\begin{gathered} S_{10}=\frac{10}{2}(3+57) \\ S_{10}=5(60) \\ S_{10}=300 \end{gathered}[/tex]Thus, the sum of the first ten terms is 300.