The height h(in feet) of a project tile with an initial vertical Velocity of 96 feet/seconds is modeled by the function h=-16t^2+96t, where t is the time, in seconds Answer the following

The height hin feet of a project tile with an initial vertical Velocity of 96 feetseconds is modeled by the function h16t296t where t is the time in seconds Ans class=

Respuesta :

The function of the height is,

[tex]h=-16t^2+96t[/tex]

where,

[tex]t=\text{time in seconds}[/tex][tex]h=\text{height}[/tex]

We will start substituting the values of t starting from when t= 0 till the function gives us negative.

Step 1:

[tex]\begin{gathered} when\text{ t=0,} \\ h=-16(0)^2+96(0)=0+0=0ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=1} \\ h=-16(1)^2+96(1)=-16+96=80ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=2} \\ h=-16(2)^2+96(2)=-64+192=128ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=3} \\ h=-16(3)^2+96(3)=-144+288=144ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=4} \\ h=-16(4)^2+96(4)=-256+384=128ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=5} \\ h=-16(5)^2+96(5)=-400+480=80ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=6} \\ h=-16(6)^2+96(6)=-576+576=0ft \end{gathered}[/tex][tex]\begin{gathered} \text{when t=7} \\ h=-16(7)^2+96(7)=-784+672=-112ft \end{gathered}[/tex]

Step 2:

Step 3: We are to plot the graph and determine the highest point.

Hence, from the graph we can confirm that the time in which the projectile was in the air is 6seconds.

Ver imagen KarlitoP141035
Ver imagen KarlitoP141035