Respuesta :

ANSWER

[tex](-\infty,-\frac{1}{6})\cup[6,\infty)[/tex]

EXPLANATION

We want to solve the inequality:

[tex]18x-5<-8\text{ or }7x-4\ge38[/tex]

Let us solve the first inequality.

First, add 5 to both sides of the inequality:

[tex]\begin{gathered} 18x-5+5<-8+5 \\ \\ 18x<-3 \end{gathered}[/tex]

Now, divide both sides of the inequality by 18:

[tex]\begin{gathered} x<\frac{-3}{18} \\ \\ x<-\frac{1}{6} \end{gathered}[/tex]

Let us solve the second inequality. Add 4 to both sides of the inequality:

[tex]\begin{gathered} 7x-4+4\ge38+4 \\ \\ 7x\ge42 \end{gathered}[/tex]

Now, divide both sides of the inequality by 7:

[tex]\begin{gathered} x\ge\frac{42}{7} \\ \\ x\ge6 \end{gathered}[/tex]

Therefore, the solution for x is:

[tex]\begin{gathered} x<-\frac{1}{6}\text{ or }x\ge6 \\ \\ (-\infty,-\frac{1}{6})\cup[6,\infty) \end{gathered}[/tex]