Which is the graph of the sequence defined by the function f(x) = 100(0.5)*-1?100(0,100)100 1x(1,100)1000, 100)90908028898827060504030201010090(1,50)1◆ (2,25)2(1,100)3(3,125)4(3,90)+590882880706050 0 30 20 1040(5,80)1(2,50)2(3,25)34(4,125)588288788980-706050403020101+(2,90)23(4,80)54

Which is the graph of the sequence defined by the function fx 1000511000100100 1x11001000 100909080288988270605040302010100901501 225211003312543905908828807060 class=

Respuesta :

..

SOLUTION

Given:

[tex]f(x)=100(0.5)^{x-1}[/tex]

Let test one point from each of the graphs in the given equation;

For the first graph:

[tex]\begin{gathered} Testing\text{ point \lparen1,50\rparen} \\ f(1)=100(0.5)^{1-1}=100(0.5)^0 \\ f(1)=100(1)=100 \\ The\text{ first graph is wrong} \end{gathered}[/tex]

For the second graph:

[tex]\begin{gathered} Testing\text{ point \lparen2,50\rparen} \\ f(2)=100(0.5)^{2-1}=100(0.5)=50 \\ The\text{ second graph is CORRECT.} \end{gathered}[/tex]

THE SECOND GRAPH IS CORRECT.