Respuesta :

Given:

There are given the vector to find the magnitude:

[tex]w=-168i-160j[/tex]

Explanation:

To find the magnitude, first, we need to find the vector for -4w.

Then,

From the given vector:

[tex]\begin{gathered} w=-168\imaginaryI-160j \\ -4w=-4(-168\mathrm{i}-160j) \\ -4w=672i+640j \end{gathered}[/tex]

Then,

The magnitude of the given vector is:

[tex]\begin{gathered} |-4w|=\sqrt{(672)^2+(640)^2} \\ =\sqrt{451584+409600} \\ =\sqrt{861184} \\ =928 \end{gathered}[/tex]

Now,

For the direction of the vector:

[tex]\theta=tan^{-1}(\frac{y}{x})[/tex]

Then,

[tex]\begin{gathered} \theta=tan^{-1}(\frac{y}{x}) \\ \theta=tan^{-1}(\frac{640}{672}) \end{gathered}[/tex]

Then,

[tex]\begin{gathered} \theta=tan^{-1}(\frac{640}{672}) \\ \theta=44^{\circ} \end{gathered}[/tex]

Final answer:

The magnitude and direction of the given vector is shown below:

[tex]\begin{gathered} magnitude:928 \\ direction:44^{\circ} \end{gathered}[/tex]

Hence, the correct option is D.