To find the area under the graph we need to calculate the integral:
[tex]\int_1^2(\frac{3}{x^2}-1)dx[/tex]So let's calculate the integral:
[tex]\begin{gathered} \int_1^2(\frac{3}{x^{2}}-1)dx=(-\frac{3}{x}-x)\vert_1^2 \\ =(-\frac{3}{2}-2)-(-3-1) \\ =-\frac{7}{2}+4 \\ =\frac{1}{2} \end{gathered}[/tex]Therefore, the area under the graph is 1/2