Respuesta :

Answer:

nPn = n!

Explanation:

Note that:

[tex]nPr=\frac{n!}{(n-r)!}[/tex]

To get nPn, let r = n

[tex]\begin{gathered} nPn=\frac{n!}{(n-n)!} \\ \\ nPn=\frac{n!}{0!} \\ \\ nPn=\frac{n!}{1} \\ \\ nPn=n! \end{gathered}[/tex]

Therefore, nPn = n!