Respuesta :

The equation given:

[tex]u(x)=h(\sqrt[]{x})[/tex]

We need to find u'(4).

This means you put in "4" into the function and see:

So, it becomes:

[tex]\begin{gathered} u(4)=h(\sqrt[]{4}) \\ u(4)=h(2) \end{gathered}[/tex]

Now, we want u'(4), so we need h'(2).

Looking into row and column of table, we find

h'(x) and "2" ------------>> we get "2".

Hence,

[tex]u^{\prime}(4)=2[/tex]